| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 | 
							- <?php
 
- require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
 
- /**
 
-  * PHPExcel_Power_Best_Fit
 
-  *
 
-  * Copyright (c) 2006 - 2015 PHPExcel
 
-  *
 
-  * This library is free software; you can redistribute it and/or
 
-  * modify it under the terms of the GNU Lesser General Public
 
-  * License as published by the Free Software Foundation; either
 
-  * version 2.1 of the License, or (at your option) any later version.
 
-  *
 
-  * This library is distributed in the hope that it will be useful,
 
-  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 
-  * Lesser General Public License for more details.
 
-  *
 
-  * You should have received a copy of the GNU Lesser General Public
 
-  * License along with this library; if not, write to the Free Software
 
-  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 
-  *
 
-  * @category   PHPExcel
 
-  * @package    PHPExcel_Shared_Trend
 
-  * @copyright  Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel)
 
-  * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt    LGPL
 
-  * @version    ##VERSION##, ##DATE##
 
-  */
 
- class PHPExcel_Power_Best_Fit extends PHPExcel_Best_Fit
 
- {
 
-     /**
 
-      * Algorithm type to use for best-fit
 
-      * (Name of this trend class)
 
-      *
 
-      * @var    string
 
-      **/
 
-     protected $bestFitType        = 'power';
 
-     /**
 
-      * Return the Y-Value for a specified value of X
 
-      *
 
-      * @param     float        $xValue            X-Value
 
-      * @return     float                        Y-Value
 
-      **/
 
-     public function getValueOfYForX($xValue)
 
-     {
 
-         return $this->getIntersect() * pow(($xValue - $this->xOffset), $this->getSlope());
 
-     }
 
-     /**
 
-      * Return the X-Value for a specified value of Y
 
-      *
 
-      * @param     float        $yValue            Y-Value
 
-      * @return     float                        X-Value
 
-      **/
 
-     public function getValueOfXForY($yValue)
 
-     {
 
-         return pow((($yValue + $this->yOffset) / $this->getIntersect()), (1 / $this->getSlope()));
 
-     }
 
-     /**
 
-      * Return the Equation of the best-fit line
 
-      *
 
-      * @param     int        $dp        Number of places of decimal precision to display
 
-      * @return     string
 
-      **/
 
-     public function getEquation($dp = 0)
 
-     {
 
-         $slope = $this->getSlope($dp);
 
-         $intersect = $this->getIntersect($dp);
 
-         return 'Y = ' . $intersect . ' * X^' . $slope;
 
-     }
 
-     /**
 
-      * Return the Value of X where it intersects Y = 0
 
-      *
 
-      * @param     int        $dp        Number of places of decimal precision to display
 
-      * @return     string
 
-      **/
 
-     public function getIntersect($dp = 0)
 
-     {
 
-         if ($dp != 0) {
 
-             return round(exp($this->intersect), $dp);
 
-         }
 
-         return exp($this->intersect);
 
-     }
 
-     /**
 
-      * Execute the regression and calculate the goodness of fit for a set of X and Y data values
 
-      *
 
-      * @param     float[]    $yValues    The set of Y-values for this regression
 
-      * @param     float[]    $xValues    The set of X-values for this regression
 
-      * @param     boolean    $const
 
-      */
 
-     private function powerRegression($yValues, $xValues, $const)
 
-     {
 
-         foreach ($xValues as &$value) {
 
-             if ($value < 0.0) {
 
-                 $value = 0 - log(abs($value));
 
-             } elseif ($value > 0.0) {
 
-                 $value = log($value);
 
-             }
 
-         }
 
-         unset($value);
 
-         foreach ($yValues as &$value) {
 
-             if ($value < 0.0) {
 
-                 $value = 0 - log(abs($value));
 
-             } elseif ($value > 0.0) {
 
-                 $value = log($value);
 
-             }
 
-         }
 
-         unset($value);
 
-         $this->leastSquareFit($yValues, $xValues, $const);
 
-     }
 
-     /**
 
-      * Define the regression and calculate the goodness of fit for a set of X and Y data values
 
-      *
 
-      * @param     float[]    $yValues    The set of Y-values for this regression
 
-      * @param     float[]    $xValues    The set of X-values for this regression
 
-      * @param     boolean    $const
 
-      */
 
-     public function __construct($yValues, $xValues = array(), $const = true)
 
-     {
 
-         if (parent::__construct($yValues, $xValues) !== false) {
 
-             $this->powerRegression($yValues, $xValues, $const);
 
-         }
 
-     }
 
- }
 
 
  |